
Abstract
We explore the feasibility of reconstructing some 3D surface information of the human fundus present in a sequence of fluorescein angiograms. The angiograms are taken during the same examination with an uncalibrated camera. The camera is still and we assume that the natural head/eye micro movement is large enough to create the necessary view change for the stereo effect. We test different approaches to calculate the fundamental matrix and the disparity map. A careful medical analysis of the reconstructed 3D information indicates that it represents the 3D distribution of the fluorescein within the eye fundus rather than the 3D retina surface itself because the latter is mainly a translucent medium. Qualitative evaluation is presented and compared with the 3D information perceived with a stereoscope. This preliminary study indicates that this approach could provide a simple way to extract 3D fluorescein information without the use of a stereo image acquisition setup.

Keywords : Retinal imaging, fluorescent imaging, stereo imaging, uncalibrated camera, 3D reconstruction.