
Model Driven Test Adaptation as Repair

Sergiy Boroday1, Hesham Hallal
1

1 CRIM, 550 Sherbrooke West, Suite 100

Montreal, H3A-1B9, Canada

{boroday, hallal}@crim.ca

Abstract. Test cases are often modified to conform to changes in software. In

this paper, test case adaptation is cast as a model-driven program repair

problem. Such a view allows one to address even the most complicated test

scripts (testing programs) with non-trivial control and data structures. At the

same time, we instantiate our approach for sequential preset tests cases. Based

on our view on adaptation as test repair, the problem of preset sequential test

adaptation could be solved with well known techniques developed in the

context of spellchecking and code correction. A preliminary case study on a

travel request management business process is reported.

Keywords: Test Adaptation, Repair, Edit distance, Spellchecking

1 A Novel Approach to Test Case Adaptation

In a modern business environment, software is constantly modified to respond to

technological and business changes. Each time software is updated, it must be tested

and validated. However, some test cases could become invalid and need to be

updated.

The majority of existing approaches to adapt test suites to program changes tend to

derive new test cases to replace the obsolete ones rather than trying to actually adapt

them. In [1], authors target adaptation of exhaustive test suites. However, exhaustive

test suites are not yet sufficiently accepted by test engineers due to computation costs.

More often, the test objectives are somehow re-engineered, and new test cases are

produced according to these objectives. Typically, the new test cases just try to

preserve some structural coverage metric. However, test designers do not always

follow well-established coverage criteria and could be driven more by experience and

intuition. Moreover, previous work on test suit reduction [2] shows the same coverage

does not guarantee the same fault detection effectiveness of these suites.

One obvious approach to test case adaptation, rather than replacing obsolete test

cases, is to keep old input part of the test case, but update outputs according to the

new model [3]. Obviously, this is not the best adaptation since old inputs could be

simply rejected or even halt the SUT, so no further inputs could be applied. Thus, the

input part of the test might also need to be adapted.

Here, we propose a novel approach to adapt test case to changing software while

preserving as much of the original test case as possible. Our approach is based on the

emerging theory of model driven program repair, which aims at automatic recognition

and bug correction in programs, in order to fulfill some objectives such as satisfaction

of a requirement or conformance to a predefined model. Usually, a minimal repair,

which introduces as little changes as possible is sought. The repair is defined as a

sequence of basic corrections on the program (script in our case). Of course, brute

force algorithms, which try all the possible repairs do not scale up well. Thus,

program repair techniques are based on game theory [4], abductive theory revision

[5], and on heuristics. Related ideas are also discussed in intelligent debugging [6],

hardware/robotics, self-repair/self-healing context, though, in these areas, highly

specialized technical methods prevail over general and externalized model-based

repair methods.

We consider reuse of ideas from program repair theory to test adaptation promising

since a contemporary test case is often a program (script) itself. While test scripts are

rather simple programs, still, they could encompass parameters, complex data

structure, components, and even some control elements such as branches, loops etc. In

the test adaptation setting, the model of the (new version) of the program becomes the

objective. Then, the test is adapted to conform to the new model of the program, using

a program repair tool or technique.

The model of the modified system should be specified by test designers, e.g., by

changing the old model according to the expected changes. Alternatively, one can try

to infer such a model using static or dynamic methods. In an extreme case, the code of

the new program could be considered as a test property “program should pass the

test”. In such a case, the updated test will be executable, however the correctness of

the incorporated oracle (expected outputs) is never guaranteed.

In the next section we instantiate our approach for a simple and intuitive case,

when a test case is just a sequence of inputs and outputs rather than a program. While

a more general case may require sophisticated methods of game theory or AI, for the

sequential case, we show that test repair could be reduced to a well known problem

studied in the context of spellchecking.

2 Test Repair as Spellchecking (Minimizing Edit Distance)

Let a system under test (SUT) be (output) deterministic, modelled by a Petri net or an

automaton with input and output actions (with no data), and a test case be simply a

word in the language of the automaton or Petri net. Petri nets are mentioned due to

their increased use in business process modeling since they simplify representation of

constructs like parallelism and choice. Basic correction operations are insert, delete,

and replace of a single action. In this setting, adaptation of an obsolete test case boils

down to finding a word of the language of the modified SUT model with minimal

Levenshtein edit distance [7] to the obsolete test case. Unlike general program repair,

the problem is well studied due to numerous applications to spellchecking, code

correction, and molecular biology. For the problem of computing Levenshtein

distance and finding such a word in a regular language efficient algorithms are known

[8], [9]. For context-sensitive languages, which strictly include Petri net languages,

these problems are computationally hard; however, efficient parallel algorithms are

known for context-free languages [10]. In a pragmatic setting, fast correction

algorithms developed in the context of spellchecking may be even more appropriate

[11].

Other edit distances, such as Hamming distance, Damerau-Levenshtein distance,

Wagner-Fischer distance, or Jaro-Winkler distance could also be considered,

however, Levenshtein distance corresponds directly to our problem statement, i.e.,

finding a minimal test repair that involves only three basic correction operations:

insert, delete, and replace.

3 A Case Study

We consider a small example to illustrate the adaptation problem and the proposed

solution. The example involves a model of a business process that takes care of

making travel arrangements for an employee within a company. The process includes

two sub-processes, booking a flight and a hotel. The executions of the two sub-

processes can interleave. The processes are represented by a Petri Net, since to derive

these processes we used the Petri Net based process mining tool ProM [12].

In the first model, called the original model O, the following activities are

involved: make a travel request (mtr); select flights (sf), select hotels (sh); choose one

flight (cof); select one hotel (soh); book flight (bf); and book hotel (bh). The Petri Net

of O is shown in Figure 1. Note that the activities in the process are not necessarily

performed following the above order. The figure shows that some activities are

actually concurrent and can appear in any order. For example, the activities select

hotels and select flights are concurrent while select one hotel always occurs before

book hotel.

Fig. 1. The Petri Net of the original model.

The second model, inferred from the log files produced by the same business

process after some changes is the modified model M. This model is the Petri Net in

Fig. 2, where the following changes are identified:

1. The activities issue a paper ticket (ipt) and issue an electronic ticket (iet) are

added to the sub-process booking a flight. One of the two activities is

performed in an execution of the process. They represent a choice for the

user of the system. However, the chosen activity must occur before booking

the flight.

mtr

sh soh

sf cof

bh

bf

2. The activity choose one hotel of the sub-process booking a hotel is replaced

by the activity choose room.

Fig. 2. The Petri Net of the modified model.

We discuss the effects of the changes introduced to the business process on testing

the implementation of the process. Consider the original model whose language

includes the word mtr sh soh bh sf cof bf that features all the activities of the process.

This word, which can be seen as a test case of O, is no longer valid in the modified

model because:

1. The language of M does not include words with the activity select one hotel (soh).

2. Either issue a paper ticket (ipt) or issue an electronic ticket (iet) must feature in

any word of the language of M that includes all the activities of the process.

The test case can be adapted (repaired) by applying the following basic corrections:

1. Replace soh by the new activity choose room (cr).

2. Insert either of the two activities ipt or iet after the activity cof.

For this simple example, there are two possible adaptations of the test case, namely

mtr sh cr bh sf cof iet bf and mtr sh cr bh sf cof ipt bf. Note that both adaptations are at

an equal Levenshtein distance from the original test case (namely, two). Any other

word would be at Levenshtein distance greater or equal to four and might heavily

distort the original objective of the test designer.

4 Discussion

Here we discuss the limitations of the proposed approach and the possible

workarounds. If the minimal repair of test case changes it drastically or simply deletes

it, we believe that the test case should not be repaired. Instead, it should be replaced.

Similarly to spellchecking some threshold of tolerance could be defined. When an

SUT undergoes some cardinal changes, the approach might even be no longer

applicable.

The proposed approach does not necessary guarantee the adapted test case to have

the same structural coverage as the original test case. Combining test adaptation with

structural coverage constitutes our future work.

mtr

sh cr

sf cof

bh

ipt

iet

bf

While data structure repair [13] is occasionally considered in the literature,

adaptation of the data part of test cases could be more challenging task.

4 Conclusion

The test adaptation problem is cast as a program/system adaptation problem.

Difficulties and advantages of the proposed approach are discussed.

Acknowledgments. We thank A. Petrenko for stimulating discussions.

References

1. El-Fakih, K., Yevtushenko, N., Bochmann, G.: FSM-Based Incremental Conformance

Testing Methods. IEEE Transactions on Software Engineering 30 (2004) 425-436

2. Rothermel, G., Harrold, M.J., Ostrin, J., Hong, C.: An Empirical Study of the Effects of

Minimization on the Fault Detection Capabilities of Test Suites. Software Maintenance.,

Bethesda, Maryland, USA (1998) 34-43

3. Fraser, G., Aichernig, B., Wotawa, F.: Handling Model Changes: Regression Testing and

Test Suite Update with Model-Checkers. Model Based Testing Workshop, Braga, Portugal

(2007) 29-41

4. Jobstmann, B., Griesmayer, A., Bloem, R.: Program Repair as a Game. Computer Aided

Verification, Edinburgh, Scotland, UK (2005) 226-238

5. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing Model Checking in Verification

by AI Techniques. Artificial Intelligence 112 (1999) 57-104

6. Stumptner, M.: A Survey of Intelligent Debugging. AI Communications. 11 (1997) 35-51

7. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals.

Soviet Physics Doklady. 10 (1966) 707

8. Wagner, R.A.: Order-n Correction for Regular Languages. Communications of the ACM. 17

(1974) 265-268

9. Konstantinidis, S.: Computing the Levenshtein Distance of a Regular Language.

Information Theory, Awaji Island, Japan (2005) 108-111

10. Pighizzini, G.: How Hard Is Computing the Edit Distance? Information and Computation

165 (2001) 1-13

11. Schulz, K.U., Mihov, S.: Fast String Correction with Levenshtein Automata. International

Journal on Document Analysis and Recognition. 5 (2002) 67-85

12. ProM toolkit. Process Mining Group, IS subdepartment, Eindhoven Technical University

(2007) http://is.tm.tue.nl/~cgunther/dev/prom/

13.Demsky, B., Rinard, M.: Automatic Data Structure Repair for Self-Healing Systems. First

Workshop on Algorithms and Architectures for Self-Managing Systems, San Diego,

California (2003) 78-95

