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Abstract

This paper reports on the implementation of a GPU-
based, real-time eye blink detector on very low contrast im-
ages acquired under near-infrared illumination. This de-
tector is part of a multi-sensor data acquisition and analy-
sis system for driver performance assessment and training.
Eye blinks are detected inside regions of interest that are
aligned with the subject’s eyes at initialization. Alignment
is maintained through time by tracking SIFT feature points
that are used to estimate the affine transformation between
the initial face pose and the pose in subsequent frames. The
GPU implementation of the SIFT feature point extraction
algorithm ensures real-time processing. An eye blink detec-
tion rate of 97% is obtained on a video dataset of 33,000
frames showing 237 blinks from 22 subjects.

1. Introduction
The aim of this paper is to report about a first ver-

sion of a real-time eye blink detector in the context of car
driving simulation. This detector was designed within the
COBVIS-D project [2], whose goal is to develop a simula-
tion environment with a multi-sensor data acquisition and
analysis system for driving performance assessment, cog-
nitive load measure and training. Concretely, subjects are
asked to sit in a driving simulator and react to realistic sce-
narios while being monitored by head and gaze trackers as
well as monochrome video cameras. Their cognitive load
will vary according to the degree of complexity of the driv-
ing task, and it can be assessed by analyzing and character-
izing various physiological and physical data, among which
are facial features.

The analysis of facial features can be carried out within
the framework of the Facial Action Coding System (FACS)
that allows the decomposition of facial expressions in terms
of facial feature displacements called Action Units (AU)
[5]. Literature review conducted for the COBVIS-D project
has identified the FACS-based approach as the more ap-
propriate to in-car driving situations. Workload or fatigue
induces slight facial changes that cannot be detected with
other methods. One can mention also that there are other
physiological measures like electrocardiography and skin
conductivity that might be better to characterize mental
workload but these types of data were not available due
to design constraints. According to the physiology litera-
ture, the main facial muscles that reflect mental effort are
the lateral frontalis, the corrugator supercilii, orbicularis
oris and levator palpebrae superioris ([13]). These mus-
cles are responsible respectively for facial feature changes
like eyebrow raiser, eyebrow frowning, lip suck, and eye
blink. Eyebrow frowning is known to increase with con-
centration [12]. Eye blink rate, duration and amplitude are
also known to vary with cognitive effort [16] and fatigue
[11], [15].

This work focuses on the detection of eye blinks as a
facial feature of choice for the measurement of the cogni-
tive load. Detecting eye blinks implies finding and possi-
bly tracking the eye region in order to reliably detect eye-
lid movements. In the literature, most of the works for
eye detection and tracking are based on traditional opti-
cal passive acquisition set-ups (e.g. see [14] and refer-
ences therein) with various algorithmic approches using
appearance-based, model-based, feature-based or motion-
based methods ([7]). Active acquisition set-ups have also
been proposed based on near-infrared illumination that ex-

1



ploits the "red-eye effect" generated by a specially designed
black and white camera with switched infrared lighting [6],
[18]. There also exist a few practical facial recognition sys-
tems based on AU detection that capture eye blink informa-
tion, notably from UCSD [3] and CMU [9].

The image acquisition set-up of our system is different
and has been designed as a trade-off between many hard-
ware and user specifications. The acquisition is done in the
dark to maximize the illumination of the display showing
the driving scenarios to the driver. The driver’s face is il-
luminated with a near-infrared source and captured with a
standard black and white CMOS camera (640x480 pixels).
As a result, the images are of very low contrast, especially
for the eye region. The nature of the images is an important
aspect of the project and it justifies the design of a dedicated
eye detection algorithm.

The paper is organized as follow. Sections 2 and 3 de-
scribes the eye and blink detection algorithms that have
been implemented, and Section 4 gives performance results
obtained so far.

2. Eye detection and tracking

Eye blink detection obviously implies prior detection of
the eyes in the image of the subject’s face. Tracking may
also help stabilize the process since frame-based eye detec-
tion is not trivial, especially when considering the nature of
the input images: low intensity combined with infrared illu-
mination make eye pupils barely visible. One benefit from
this is that the scene background is very dark, which greatly
facilitates face location in the image.

2.1. Profiles for eye detection

A simple eye detector based on profile analysis [10] was
considered. This method finds facial features by analyzing
the horizontal profile (row grayscale averaging) of the face
image. For example, the eyes ’create’ deep valleys in the
profile; the nose and the mouth have similar impacts. So
locating the eyes amounts to finding the minimum of the
large valley in the profile of the upper part of the face im-
age. Once the row including the eyes is found, a vertical
profile is computed and analyzed in order to find two deep
valleys corresponding to the x-coordinates of the eyes. The
nose is found in a similar way. As it is suggested in [10],
the final position of the facial features may be determined
after finding the best ’constellation’ of features that corre-
sponds to a human face. One major limitation is the high
risk of failure as the subject rotates his head (in-plane). In
addition, tests indicate that although fairly good precision is
expected for the y-coordinate of the eyes, the valleys along
the horizontal profile are quite spread with no real mini-
mum, so x-coordinates are much less stable from frame to
frame. In order to cope with these limitations, the profile-

based technique is used as an initialization step for a feature
tracking approach that is described next.

2.2. Why tracking

The idea behind resorting to tracking is this one: if one
assumes that regions of interest can be found around the
eyes at frame 0, accurate tracking of the head movement
would allow adaptation of the position/shape of these re-
gions. The key to adaptation is the ability to estimate the
affine transformation between the face at current frame and
the face at frame 0 (where it is assumed to be fully frontal).
Yao et al. [17] opted for this approach to estimate the 3-D
head pose based on two assumptions: facial features lie in a
rigid plane, and change in position of the projected features
is approximated by a global affine transformation. They
used correlation to find correspondences between two con-
secutive frames and then estimated the parameters of the
affine transformation, with temporal stability ensured by a
Kalman filter. This paper reuses the same scheme but in-
stead of computing correlations, which may be unreliable
considering the poor quality of the images being processed,
correspondences are found by comparing SIFT points in the
current frame with those found in frame 0; regions of inter-
est such as those including both eyes (denoted R0

Leftand
R0

Right) and defined at frame 0 will be subject to the same
transformation that maps matching SIFT points.

2.3. Feature point extraction

Feature points are found using the scale-invariant feature
transform (SIFT) [8]. They usually coincide with facial fea-
tures such as nostrils, but stable points are also found on the
head strap worn by the user during experiments. Although
quite a few SIFT implementations are available as C/C++
code on the Internet, the GPU-based implementation pro-
vided in the library OpenVIDIA [1] was selected. It ex-
ploits the processing power of the graphics card to achieve
a significant speedup (10x) over “traditional” software ver-
sions. Speeds around 60 frames per second (640x480 pix-
els in size) have been reached with an off-the-shelf nVIDIA
graphics board that carried out both feature extraction and
matching while at the same time relieving the main CPU.

2.4. Computing transformations

Once feature points x′i, are extracted from the current
frame, the correspondence stage tries to match them to the
points xi extracted at frame 0 by comparing their signatures
(Euclidean distance). Given N matching pairs (xi, x′i), with
the assumption that

x′i = Axi + b + ei, 1 ≤ i ≤ N (1)

where A is the dilation/shear/rotation component and b
is the translation component of the affine transformation (ei



is the model fitting error at each point), the least-squares
estimate of the affine transformation is given by:

â = (XT C−1X)−1XT C−1y

where â = [Â11, Â12, b̂1, Â21, Â22, b̂2] represents the es-
timates of the affine parameters, C=diag(C1, C2, ...CN ) is
a matrix of covariance estimates representing a measure of
uncertainty about the matching ’quality’ of each pair, and

XT =
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x
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x
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and 0T = [0, 0]. The matrix C could be built by us-

ing the distance between matching points that is computed
during correspondence. Corners of the regions of interest
Rj

Leftand Rj
Right around the eyes at frame j are then given

by (1) using corners of R0
Left and R0

Right as xi.

2.5. Initialization

The profile method discussed in Section 2.1 may gen-
erate costly errors as time goes on but it is adequate for
initializing tracking, provided that the user faces the cam-
era at frame 0 (which is a reasonable constraint). Since the
method gives approximate eye positions, especially for the
x coordinate, adjustments are needed: the ROI presumably
including the left eye is moved around its initial position
and for each of those positions, the ROI including the right
eye is also moved around its starting position. All visited
pairs of ROI locations are characterized using three quality
measures (between 0 and 1) that are added together to form
a global score that should be minimized. The first measure
is based on the difference of proportions of dark pixels be-
tween the center part of the ROI (analysis windows shown
in light blue in Figure 1) and a region below (violet boxes).
This ensures that each ROI is centered on the pupil and not
the eyebrow. The second measure checks for the horizontal
symmetry of each eye region. Finally, the last measure is
a correlation coefficient that compares both regions (ROIs
well aligned on eyes should have high similarity). The pair
of ROI locations with the highest score represent R0

Left and
R0

Right.

3. Blink detection
The basic step in blink detection is a simple motion

detector based on thresholded frame difference inside the
tracked regions of interest Rj

Left and Rj
Right. Optical flow

is then computed inside the bounding box of each resulting
blob to determine eyelid raise or fall. Although based on the
algorithm in Bashkar et al. ([4]), which used motion flow to

Algorithm 1 Algorithm for blink detection. See Figure 2.
1. Locate motion regions using frame differentiation in

each eye roi.

2. Threshold the motion regions and keep the better
blob based on position, area, angle, density and
width/height ratio.

3. Repeat 1-2 until candidates in both regions are found.

4. Compute optical flow field in the blob regions and ex-
tract the vertical and horizontal vectors in the blobs’
coordinate system.

5. If the dominant motion is downward for both regions,
the closing frame is saved otherwise steps (1) to (5) are
repeated.

6. Repeat steps (1) to (4) with the additional constraint
which is that blob position must be close enough to the
saved closing position.

7. If an opening frame is found within the determined
maximum blink length, the blink sequence is kept for
further analysis, otherwise the blink hypothesis is re-
jected and the process restarts from step (1).

detect downward moving eyelids and initialize tracking of
the eyes, the proposed approach rather relies on the tracked
eye’s position for local computation of the motion flow. The
basic algorithm is described in Algorithm 1.

In the process, blob filtering is obviously required in or-
der to decrease false alarms. Not surprisingly, it appeared
during development that a fixed set of thresholds on blob
properties (area, angle, etc.) could not be set optimally for
all subjects. So a set of adaptive thresholds that evolve over
time has been created to match more accurately the blob
properties associated to a given subject. When a new blink
is detected, the model is updated by tightening thresholds,
and tolerance to false alarms decreases. However, despite
model update, some false alarms persist. After a completed
blink, a validation step is performed : the ROI at the begin-
ning of the blink is compared (square difference) to those
throughout the blink sequence, thus making up a signature
with properties such as amplitude and duration that are typ-
ical for each subject. A blink sequence should then meet the
following three factors to be considered valid.

1. A local maximum in the signature must be present.

2. The local maximum must have non-negligible ampli-
tude.

3. Local maxima from both eyes must be similar.



Figure 1. In the upper images, red boxes show the approximate eyes position based on image profiles and the green ones are the best
positions found. The lower images show left and right eye regions with the desired eye location in light blue. The ROI will be well aligned
with the pupil when the number of dark pixels in the light blue box/violet box are maximal/minimal. Note that the images shown here, as
well as in the remainder of the paper, have been enhanced (histogram-equalized) for clarity.

Figure 2. Step 1 of the blink detection algorithm is illustrated at
the bottom left showing blobs from frame difference. Upper right:
ROIs corresponding to the better blobs of step 2 are shown. Bot-
tom right: the optical flow field computed for each blob is shown,
and a dominant downward motion can easily be determined.

Figure 3 shows various types of false alarms, some that
don’t reach the minimum square difference, and some with-
out local maxima.

4. Results and discussion

The dataset used for testing the algorithm is composed of
raw (uncompressed) video sequences of 22 subjects sitting
in the driving simulator (one sequence per subject, with an
average length of 45 seconds, or 1,500 frames). Among the
subjects, there are nine elderly persons, and eight partici-

Figure 3. This graph shows the square difference between first and
remaining images of a detected eye blink sequence, for many se-
quences. Solid (blue) lines show valid blink sequences and dotted
(red) lines show some false alarms. One source of false alarm is a
brief head movement, whose amplitude generates different signa-
tures.

pants wearing glasses.
SIFT feature point extraction yields around 120 match-

ing points in the face area. (Recall that matching is per-
formed between the set of points extracted at frame 0 and
those at the current frame.) Roughly 80 matching pairs are



Figure 4. Set of correspondences found when SIFT points from
rotated face at frame n (right) are matched to reference face at
frame 0. Green lines link matching points.

coherent enough to be used for the estimation of the affine
parameters. This number decreases to 50-60 when in-plane
face rotations occur (see Figure 4 for an example), and nat-
urally drops significantly when out-of-plane rotations ap-
proach 90 degrees (subject wants to look to the side). In this
latter case, loss of track eventually occurs due to the lack
of reliable correspondence between the frontal and profile
views. One interesting benefit of the method is that as the
head turns back into normal position, an increasing number
of matching points are found and tracking normally resumes
without external intervention (Figure 5).

It could be argued that SIFT feature point matching may
not yield a reliable estimate of the affine transformation be-
cause of the non-rigid deformations of the face due to face
expressions. Typical experimental conditions are such that
subjects perform the required driving tasks with a neutral
face facing the camera. Loss of track and blink misses as
a result of marked head turns are not critical for the ex-
periments. Furthermore, significant face areas (head strap,
nose, ears) can be considered rigid and are thus expected
to supply reliable points. A potential improvement would
be to evaluate the reliability of the feature points and use
the reliability measures during the estimation of the affine
parameters.

As far as blink detection per se is concerned, ground
truth analysis shows that each sequence contains from 1 to
48 blinks for a total of 237 blinks over all sequences. A
blink detection rate of 97% was obtained (only 7 missed
blinks), whereas 25 false detections were found over the
>33,000 frames processed. The algorithm was tuned to
be very sensitive to the vertical movements in order to ac-
count for some subjects having eye blinks of small ampli-
tude (Figure 6). Closer analysis of these 25 false detections
reveals that they were the result of gaze lowering (16), ver-
tical head movements (5), camera vibrations (3) and eye
movements (1). Gaze lowering regularly occurs during the

Figure 6. Difficult case in blink detection; nevertheless the algo-
rithm successfully detected the blink.

driving simulation. Although a decrease in the number of
false detections is desirable, the current performance is rea-
sonably good considering the low image quality. In the cur-
rent implementation, crude filtering of the parameters of the
affine transformation ensures tracking smoothness; a more
formal filter design based on Kalman filter is under way,
but it is not clear whether a better filtering will reduce false
detections significantly since blob filtering during blink de-
tection is already tolerant to light tracking jitter. In the
same vein, the sensitivity of the tracking to facial expres-
sion changes should be evaluated as well as their impact on
blink detection. As for processing speed, the current version
with non-optimized code (apart from the GPU-based SIFT
library) reaches about 25 frames per second. A screenshot
of the module is shown in Figure 7.

5. Conclusion
In conclusion, this paper presented a blink detection al-

gorithm, combined to SIFT-based tracking for greater ro-
bustness. Tracking was performed in near real time thanks
to the use of a GPU-based SIFT implementation. Detection
rate was 97% over 22 sequences averaging 1,500 frames in
length, and false alarms were reasonably low (less than 1
in 1,000 frames). The tracking capability developed in the
context of blink detection is a key feature for future work:
the stable reference frame that it provides will be a sound
basis for a more extensive analysis of facial features related
to drivers’ cognitive load such as frowning: one merely
needs to define and track more regions of interest over the
eyes for e.g. capturing eyebrow movements.
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Figure 5. Sub-sampled sequence with subject looking to the side. Tracking eventually resumes automatically.
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