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ABSTRACT

We present a comparative study between a complexWavelet Coe�cient Shrinkage (WCS) �lter and several standard speckle
�lters that are widely used in the radar imaging community (Lee, Kuan, Frost, Geometric, Kalman, Gamma, etc.). The WCS
�lter is based on the use of Symmetric Daubechies (SD) wavelets which share the same properties as the real Daubechies
wavelets but with an additional symmetry property. The �ltering operation is an elliptical soft-thresholding procedure with
respect to the principal axes of the 2-D complex wavelet coe�cient distributions. Both qualitative and quantitative results
(signal to mean square error ratio, equivalent number of looks, edgemap �gure of merit) are reported. Tests have been
performed using simulated speckle noise as well as real radar images. It is found that the WCS �lter performs equally well as
the standard �lters for low-level noise and slightly outperforms them for higher-level noise.
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1. INTRODUCTION

The aim of this paper is to present the results of a comparative study between a complex Wavelet Coe�cient
Shrinkage (WCS) �lter and several custom speckle �lters that are largely used by Synthetic Aperture Radar (SAR)
imaging scientists. Our WCS �lter is based on the use of Symmetric Daubechies (SD) wavelets, which are obtained
from a complex multiresolution analysis (MRA).

The present work is part of the image analysis activities at Lockheed Martin Canada (LM Canada). The company
is the prime contractor for a new Spotlight SAR (SSAR) sensor and is involved in the study, design, implementation
and development of algorithms for airborne surveillance applications. In particular, these include the study of
algorithms for the fusion of dissimilar data coming from imaging (SAR, FLIR) and non-imaging sensors (radar,
ESM, IFF,...) in order to (1) improve long range Automatic Target Recognition (ATR) (especially ship targets) and
(2) enhance Command & Control Systems1.

1.1 Speckle

Speckle noise is a common phenomena in all coherent imaging systems like laser, acoustic and SAR imagery2�4.
The source of this noise is attributed to random interference between the coherent returnsy issued from the numerous
scatterers present on a surface, on the scale of a wavelength of the incident radar wave (i.e. a resolution cell). Speckle
noise is often an undesirable e�ect, especially for ATR systems. Thus, speckle �ltering turns out to be a critical
pre-processing step for detection/classi�cation optimisation.

Basically, SAR speckle reduction techniques fall into two categories: non-coherent (or multi-look integration)
and adaptive image restoration techniques (post-image formation methods). Multi-look techniques5 consist of (1)
dividing the bandwidth of the azimuth (along track) spectrum of the radar image into L segments (called looks
and corresponding to L echo spectra of the same scene point generated by L incident radar pulses), (2) forming L

�SPIE Proc. #3169, conference "Wavelet Applications in Signal and Image Processing V", San Diego, 1997
yEarly descriptions of speckle noise were given by optical scientists around 1962. They used to use the term \wavelets" rather than

\returns", in reference to the historical Huyghens's nomenclature for the description of light propagation and di�usion.



independent images from these spectra and (3) incoherently averaging them. This reduces the azimuth spectrum
bandwidth, and thus speckle noise, but at the expense of increasing the computational load and degrading the image
resolution if L is too large. However, many SAR systems integrate few looks during the image formation in order
to minimally improve image quality. If necessary, residual speckle has to be processed using post-image formation
�lters6�14. Among the more widely used �lters are the Median, Lee, Kuan, Frost and Gamma �lters. Others like
the Kalman, Geometric, Oddy and AFS �lters are less common (maybe because of the algorithmic complexity)
but are nevertheless considered as competitive candidates to the \standard" �lters. All these �lters usually perform
e�ciently on most SAR images but with some limitations regarding resolution degradation and smoothing of uniform
areas. Wavelet-based �lterings have been proposed to overcome these di�culties15�19. They are essentially based on
a WCS approach and seem to demonstrate a higher quality in image enhancement (i.e. good signal averaging over
homogeneous regions with minimal resolution degradation of image details). We have recently proposed such a �lter,
based on the use of SD wavelets19. The performance results were encouraging but comparative tests were performed
only with a small subset of standard �lters (Median and Geometric). A more extensive test bank was required in
order to better validate our tool; this is the purpose of the present work.

1.2 Speckle statistics

Fully developed speckle (i.e. when the number of scatterers is large in one resolution cell) has the characteristics of
a random multiplicative noise. Under the assumption that the real and imaginary parts (respectively the so-called in-
phase (denoted I) and quadrature (denoted Q) components of a complex radar image) of the speckle have zero-mean
Gaussian density, noise intensity can be shown to follow a Gamma distribution (which reduces to an exponential
distribution for single-look images)5. The mean-to-standard-deviation ratio (a measure of the signal-to-noise ratio)
of such a distribution satis�es � mean

standard deviation

�2
= L = constant (1:1)

A usual way to estimate the speckle noise level in a SAR image is to calculate Eq. (1.1), often termed the Equivalent
Number of Looks (ENL), using pixel intensity values over a uniform image area. Unfortunately, the ENL carries no
information on the resolution degradation and because of that, we will use it jointly with the Signal-to-Mean-Square-
Error Ratio (S/MSE) (10log10[

P
pixels I

2
1=
P

pixels(I2 � I1)
2], where I1 and I2 are the unnoisy and noisy images,

respectively) which corresponds to the standard SNR in case of additive noise.

Experimentally measured speckle distributions can deviate from the theoretical Gamma distribution for speci�c
types of targets. For instance, Log-Normal distribution turns out to be a good speckle model for high-resolution
sea-clutter imagery20. Because of our particular interest in ocean surveillance, we have retained this distribution in
our speckle simulations. However, it appeared later that this choice is not critical (tests performed with the Gamma
distribution have shown no signi�cant change in the �lter performance results). One can generate the Log-Normal
distribution using

XLog�Normal = exp(XNormal

p
2 logM=m+ lnm) (1:2)

where M and m are the mean and median values of the distribution and XNormal � N(0; 1). Without loss of
generality, we have chosen M = 1. The equivalence between m and L has been calculated numerically and is given
in Table 1.

m 0.70 0.75 0.80 0.85 0.87 0.90 0.92 0.95 0.97 0.99
L 1.0 1.4 1.9 2.7 3.2 4.4 5.6 9.4 16 50

Table 1: Number of looks L as a function of median parameter m for the Log-Normal distribution (1.2) with M = 1

1.3 Symmetric Daubechies wavelets

Symmetric Daubechies (SD) wavelets, and their underlying scaling functions, are obtained from a complex
MRA21;22. The complex scaling function '(x) and wavelet  (x) satisfy the usual MRA equations

'(x) = 2
X
k

ak '(2x� k)  (x) = 2
X
k

bk '(2x� k) (1:3)



with
ak = a2J+1�k; bk = (�1)ka?2J+1�k J = 0; 2; 4; 6; ::: k = 0; :::; 2J + 1 (1:4)

where ? stands for complex conjugate.

In addition to sharing the same properties as the real Daubechies wavelets (i.e. compact support, orthogonality
and vanishing moments), SD wavelets and scaling functions are symmetric (respectively of odd and even parity with
respect to the center of the compact support) and have a better interpolation capability due to identical vanishing
of the second centered moment of the real part of the scaling function23. Multiwavelets can also hold concurrently
all these properties24 and in fact, as is obvious from Eq. (1.3), SD wavelets also have a multi-wavelet interpretation
in terms of 2x2 matrices.

Symmetry is the property that makes SD wavelets particularly interesting for image processing applications. It
allows the use of symmetric extension of data at the image boundaries. Symmetric extension prevents discontinuities
introduced by a periodic wrapping of the data. Apart from slightly increasing the computational load, the complex-
value of the transform is not really a drawback (Fourier transform is also complex!). Like Fourier, SD wavelets
introduce redundancy in the transformation of a real signal but this can be used in an advantageous way for the design
of local multiresolution sharpening operators and POCS (Projection Onto Convex Sets) �ltering algorithms23;25.
Also, it has been experimentally demonstrated that phase of the wavelet coe�cients encodes much information on
edges25.

2. SPECKLE FILTERS

2.1 Wavelet �lter

Our wavelet speckle �lter is based on the well-known soft-thresholding procedure26. However, use of SD wavelets
provides an opportunity to modify this algorithm in order to manage the complex-valued characteristic.

We have numerically observed that wavelet coe�cients in each spectral band (the so-called VW, WV and WW
blocks) can be modelized as a bi-Normal distribution of mean (�x; �y) (nearly zero) and covariance matrix R which is
in general not diagonal (real and imaginary parts are correlated). In addition, the distributions are usually oriented
di�erently in each block (Figure 1). Based on this fact, it seemed natural to us to propose an algorithm that performs
wavelet coe�cients thresholding with respect to the principal axes (�; �) of the 2-D distributions. As a result, the
threshold level becomes angle-dependent and extends in proportion to the eccentricity of the centered dispersion
ellipse. In practice, since the noise characteristics can di�er in each block, we have also chosen to process them
separately. Thus, the VW block at the highest resolution level provides noise statistics for thresholding all the lower
resolution VW blocks (similarly for the WV and WW blocks).
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Figure 1: Illustration of the elliptical thresholding rule on a complex wavelet coe�cient distribution.
Left: before thresholding. Center: elliptical thresholding area. Right: after thresholding

The complete WCS for SAR image then proceeds as follows19.



� Make a logarithmic transformation (more precisely log(I + 1:0)) of the original image I

� Make a N-level SD wavelet transform

� For each block type (VW, WV and WW) and level j (j=1,2,...,N), perform the following operations:

{ Calculate the mean, covariance matrix elements, orientation angle and uncorrelated standard deviations
�� and �� of the wavelet coe�cient distribution

{ Noting wk � � + i� (with respect to the principal axis coordinates), apply the following elliptical soft-
thresholding rule

jwk j ! 0 if
�2

t2�
+
�2

t2�
� 1:0 jwkj ! jwkj � T (�) if

�2

t2�
+
�2

t2�
> 1:0 (2:1)

where

T (�) =
t�t�p

(t� sin �)2 + (t� cos �)2
; t� = ��1� t� = t���=�� (2:2)

� is the phase of the wavelet coe�cient distribution (with respect to the principal axes), �1� is the principal
standard deviation along the �-axis at the �nest resolution level and � is a free denoising parameter.

� Invert the DWT

� Invert the logarithmic transformation
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Figure 2: Variation of the S/MSE as function of � and for N = 1; :::; 6 (see text for details)

The logarithm transformation is a common homomorphic transformation performed on SAR images and is used
to transform multiplicative noise into additive noise3. It also allows compliance with the additive noise hypothesis
in the standard WCS algorithm26.

In order to minimize the image artifacts (Gibbs-like phenomena) resulting from the lack of translation invariance
of discrete wavelet bases, we have embeded our algorithm into the cycle spinning algorithm27. This consists in
averaging the result of the WCS �lter over all possible shifts of the input image (16 translations were su�cient in
practice).



Most of the numerical tests have been done with the J = 2 wavelet. Its short support (6-taps) minimizes the
computation time and no signi�cant changes are obtained with higher-order wavelets. Parameters N and � have
been varied during the tests (1 to 6 and 0.1 to 3.0, respectively) in order to have a clear picture of their e�ects. In
theory, N should be large but in practice we have limited the number of decomposition levels to 6. Figure 2 shows
the SMSER obtained after processing an urban image corrupted by a simulated 4.4 dB Log-Normal noise (L = 2:7).
Each curve corresponds to a di�erent value of N (1 to 6). Upper curves (diamonds) are for SD wavelets while lower
ones (crosses) are for the 6-taps real Daubechies wavelet (with periodic warping of boundary data). Points on each
curve are for di�erent values of �. In this case, an optimal S/MSE is obtained for N = 6 and � = 1:4. All the
comparative results presented in the next section are for optimal S/MSE values only.

2.2 Standard �lters

Let x be an image pixel corrupted by a stationary multiplicative noise n such that y = nx. Without loss of
generality, we assume noise of unit-mean (�n = 1). Many standard �lters require knowledge of �y as well as the
standard deviations �y and �n. In practice, �y and �y are estimated locally, within a �nite size window. Noise
standard deviation �n (and L) is given as an input �lter parameter or can be estimated over a uniform area in the
image. In fact, under the unit-mean noise assumption, we have ENL = (�y=�y)

2 = 1=�2n.

The 8 standard speckle �lters considered in this comparative study are the following.

Kuan �lter

The Kuan �lter is based on a Minimum Mean Square Error (MMSE) criterion8. A MMSE estimate is �rst
developed for and additive noise model y = x+n. The multiplicative noise model is then considered under the form
y = x + (n � 1)x from which the corresponding linear �lter is deduced. The Kuan �lter is optimal when both the
scene and the detected intensities are Gaussian distributed. Under the unit-mean noise assumption, the pixel value
estimate x̂ is given by

x̂ = �y +
�2x(y � �y)

�2x + (�y2 + �2x)=L
�2x =

L�2y � �y2

L+ 1
(2:3a; b)

We have put x̂ = �y for the pathological cases where measures yield �2x < 0.

Lee �lter

The Lee �lter (more precisely Lee MMSE �lter6) is a particular case of the Kuan �lter when the term �2x=L is
removed in Eq. (2.3a). This term does not appear in Lee's original derivation due to a linear approximation made
there for the multiplicative noise model (a �rst-order Taylor series expansion of y about x and n).

Another �lter that is a particular case of Kuan is the Nathan �lter9. This one is obtained by puting L = 1 in Eq.
(2.3) and is thus applicable to 1-look SAR images only. For this reason, it has not been included in our tests.

Gamma �lter

The Gamma �lter is a Maximum A Posteriori (MAP) �lter based on a Bayesian analysis of the image statistics13.
It assumes that both the radar re
ectivity and the speckle noise follow a Gamma distribution. The \superposition"
of these distributions yields a K-distribution which is recognized to match a large variety of radar return distributions
of land and ocean targets. The estimate x̂ is given by

x̂ =
(�� L� 1)�y +

p
�y2(�� L� 1)2 + 4�Ly�y

2�
� =

L+ 1

L(�y=�y)2 � 1
(2:4)

We have put x̂ = �y for the pathological cases where measures yield a negative or a complex estimate for x̂.

Frost �lter

The Frost �lter7 is an adaptive Wiener �lter which convolves the pixel values within a �xed size window with an
exponential impulse response m given by

m = exp[�KCy(t0)jtj] Cy = �y=�y (2:5)



where K is the �lter parameter, t0 represents the location of the processed pixel and jtj is the distance measured
from pixel t0. This response results from an autoregressive exponential model assumed for the scene re
ectivity x.

Kalman �lter

A 2D Kalman �lter has been implemented on a causal prediction window, the so-called Non-Symmetric Half
Plane (NSHP), de�ned as W = fp; q : 1 � p �M;�M � q �M ; p = 0; 1 � q �Mg, with M = 2. In this �lter, the
image is assumed to be represented by a Markov �eld which satis�es the causal autoregressive (AR) model

x(m;n) =
X

(p;q)2W

apqx(m� p; n� q) + u(m;n) (2:6)

where x(m;n) represents the pixel value at location (m;n), u(m;n) is a noise sequence (this is not the speckle noise)
which drives the Markov process and apq are the re
ection coe�cients of the AR model. The parameters apq are
evaluated based upon the global estimates of the autocorrelation sequence of the image over the �nite window W .
From these parameters, the AR model can be arranged into a 2D block recursive form (Figure 3) for the Kalman
�lter equations. Implementation of this �lter is very much involved and we refer to Ref. 14 for more details about
the 2D kinematic model (limited here to speckle modelling only) and the Kalman �lter equations.

Geometric �lter

The geometric �lter is a nonlinear morphological �lter that uses the concept of image graph12. The image graph
is obtained by transforming the original image into a 3-dimensional diagram where the pixel coordinates specify the
position of the pixel on a plane and the pixel value speci�es the elevation of the pixel with respect to that plane. The
�ltering process itself is performed �rst on row slices (i.e. 1-dimensional pro�le graphs similar to Figure 4a) of the
image graph using a 8-hulling algorithm. Slice pixels are set to 1 if the pixel is on or below the image graph surface,
while pixels above the image graph surface are set to 0 (Figure 4b). The �ltering algorithm searches for 4 di�erent
con�gurations (3x3 binary morphological masks) and when it �nds one, the graph pixel corresponding to the central
pixel of the mask is set to 0. The procedure is repeated for the complementary graphs and masks (Figure 4c) except
that the central pixel is now incremented by 1. The whole procedure is repeated on column and diagonal slices. This
completes one iterative step of the geometric �lter. A �ltering is achieved because speckle appears as narrow walls
and valleys on the binary slice images and because the geometric �lter, through iterative repetition, gradually tears
down and �lls up these features.

Past blocks Present block

W

Image pixels
(a)

(b) (c)

Figure 3 (left): 2D block recursive form for the Kalman �lter
Figure 4 (center): (a) Exemple of image graph; (b) Binary slice and masks and their complements (c)

Figure 5 (right): The 8 binary masks used by the ASF �lter

Oddy �lter

The Oddy �lter can be considered as a mean �lter whose window shape varies according to the local statistics10.
The estimate x̂ is given by

x̂ = �y if m < ��y; x̂ =

P
k

P
lWkly(k; l)P
k

P
lWkl

if m > ��y (2:7)

Wkl = 1 if jy(k; l)� yj � m; Wkl = 0 otherwise



where �x is evaluated locally over a 3x3 window, m = 1=8
P

k

P
l jy(k; l)� yj and � is the �lter parameter. W plays

the role of an adaptive binary mask that is applied over the window.

AFS �lter

AFS �lter stands for Adaptive Filter on Surfaces11. It is another adaptive mask �lter that uses the concept of
\local emerging surface" (l.e.s.) value. The l.e.s. is the area of the image graph surface de�ned over the window.
The l.e.s. is calculated for the 9 binary masks shown in Figure 5. The mask whose l.e.s. is a minimum is selected
and a mean �ltering is performed over the mask pixels. The mean value is assigned to the central pixel of the 5x5
window.

3. TESTS AND DISCUSSION

3.1 Simulated images

Figure 6: Urban test images.
Upper row: original and noisy (L = 9:4). Lower row: Gamma and Wavelet �ltered (Table 2)

We have simulated radar textured images by degrading two aerial photographs (www.cent.org) with unit-mean
Log-Normal multiplicative noise (Figures 6a,b and 7a,b). The two scenes (urban and agricultural regions) have



very di�erent spectral content (high and low frequency, respectively) in order to observe the e�ect on the �lters'
performance. Three noise levels have been tested, corresponding to L = 2:7, 9.4 and 50. Filtering performance has
also been calculated using measured ENL, as it is done in practical situations. A uniform area has been identi�ed
in each image from which ENL (or noise variance) has been measured and used in the �lter equations. Quantitative
performance measures are summarized in Tables 2 and 3 and correspond to the best enhanced images obtained, with
respect to the S/MSE. During measures, image radiometry (image intensity) has been conserved by assuring that
the enhanced and noisy images have the same global mean. Two of the best enhanced images for the case L = 9:4
are shown on Figures 6c,d and 7c,d.

Figure 7: Agricultural test images.
Upper row: original and noisy (L = 9:4). Lower row: Gamma and Wavelet �ltered (Table 3)

We observe from Tables 2 and 3 that the optimal S/MSE is highly dependent on the noise level and signal content.
High spectral content images require lower wavelet coe�cient threshold values. Higher wavelet coe�cient thresholds
are necessary for higher noise levels because of the more important wavelet coe�cient distribution spreading.

Quantitatively, the WCS �lter performs as well as the best standard �lters (Frost, Gamma, Kuan) for low-level
speckle noise (L > 10) and slightly outperforms them for higher speckle noise level (L < 10), especially in the case of
low spectral content (Figure 7). This is veri�ed for speci�c wavelet �lter parameter values. Qualitatively, the wavelet
�lter o�ers the best trade-o� between image resolution conservation and averaging over uniform regions. This can be



L = 2:7 L = 9:4 L = 50
S/MSE ENL Notes S/MSE ENL Notes S/MSE ENL Notes
(dB) (dB) (dB)

Noisy 4.4 9.8 17.0

Lee 9.0 144 5x5 12.8 97 3x3 18.5 446 3x3
Kuan 9.4 144 5x5 13.0 97 3x3 18.5 448 3x3
Gamma 9.6 140 5x5 13.1 96 3x3 18.6 448 3x3
Frost 10.2 127 7x7; K1:5 13.4 84 3x3; K3:0 18.7 386 3x3; K7:0

Kalman - - 11.7 39 - -
Geometric 7.9 144 3 iter. 11.6 93 2 iter. 17.5 206 1 iter.
Oddy 10.0 47 5x5; �0:7 12.9 110 3x3; �0:5 16.6 367 3x3; �0:2
AFS 8.3 37 9.4 86 10.7 433

Wavelet 10.9 151 N6; �1:4 13.6 172 N6; �0:8 18.6 340 N6; �0:3

Table 2: Quantitative enhancement measures performed on the urban test image (Figure 6)

L = 2:7 L = 9:4 L = 50
S/MSE ENL Notes S/MSE ENL Notes S/MSE ENL Notes
(dB) (dB) (dB)

Noisy 4.3 9.7 17.0

Lee 13.6 68 7x7 17.3 129 7x7 21.9 310 7x7
Kuan 14.0 74 7x7 17.4 140 7x7 21.9 319 7x7
Gamma 14.1 80 7x7 17.5 146 7x7 22.0 373 7x7
Frost 14.6 156 7x7; K1:0 17.4 155 7x7; K3:0 22.1 313 7x7; K7:0

Kalman - - 15.8 63 - -
Geometric 13.8 471 4 iter. 16.1 555 3 iter. 20.8 218 1 iter
Oddy 14.3 89 7x7; �0:8 16.9 146 7x7; �0:5 20.6 370 3x3; �0:3
AFS 12.2 29 14.8 90 17.2 270

Wavelet 16.3 241 N6; �2:0 18.6 345 N6; �1:6 22.1 427 N6; �0:8

Table 3: Quantitative enhancement measures performed on the agricultural test image (Figure 7)

observed, in particular, on the enhanced urban images (Figure 6). This also happens to be observed in the following
experiment about edge preservation measure.

3.2 Edge map

An edge map is a binary image identifying pixels that are on an edge. In order to get a quantitative evaluation of
edge preservation for each �lter, we have performed an experiment proposed by Frost et al.7. The following procedure
has been used to create an edge map under a controlled environment (1) simulate an arti�cial noisy edge (a 200-50
pixel intensity step here), (2) apply the �lter, (3) apply a Robert's gradient operator for edge detection, (4) create a
binary image by thresholding the pixel values and (4) calculate an edge map Figure Of Merit (FOM).

The edge FOM used here is the one proposed by Abdou and Pratt28. Let two congruent images I and A, represent
ideal and actual edge maps of a single step edge. The ideal edge map is assumed to contain NI edge pixels, while
the actual edge map contains NA. If d is the perpendicular distance from the actual edge pixel to the ideal edge, one
can de�ne a FOM by

R(%) =
100

max(NA; NI)

NAX
i=1

1

1 + �d2
(3:1)

where � is an arbitrary penalty parameter for o�set edge pixels (we choose � = 10 here). A perfect edge map yields
R = 100%. Since the selection of the threshold greatly a�ects the nature of the edge map, the threshold that yields



the optimal FOM has been determined. We have performed FOM measures on a highly (L = 1:9) and moderatly
noisy edge (L = 9:4). Table 4 gives the FOM obtained when optimizing the S/MSE over the various �lter parameters.
The window size has been limited to 5x5 for the Lee, Kuan Gamma and Frost �lters, in order to limit the resolution
degradation. Four iterations have been used for the geometric �lter. The WCS �lter provides the best quantitative
and qualitative (Figure 8) results for the noisiest case (L = 1:9). The di�erence is less important for the low-level
case.

Noisy Lee Kuan Gamma Frost Geometric Oddy Wavelet

FOM(%) @ L = 1:9 0.9 6.1 6.4 6.2 28.2 18.3 10.9 38.1
FOM(%) @ L = 9:4 3.7 49.5 49.6 55.0 58.6 58.5 44.4 64.1

Table 4: Edge map FOM from Eq. (3.1) for various �lters (see Figure 8 and text for details)

Figure 8: Noisy image and edge maps for the noisy Frost, Geometric and Wavelet �ltered images (Table 4)

3.3 A real image

Finally, we have tested the various �lters on a real high resolution (1m/pixel) strip-map SAR image obtained
from an airborne platform (www.amps.gov). Figure 9 shows a portion of the original image (ENL=3, �2n = 0:33) and
the enhancement produced by the Frost (7x7 window, K = 1), Kuan (7x7 window), Oddy (7x7 window, � = 1:0),
Gamma (7x7 window) and Wavelet �lter (N = 6, � = 2:0). The superiority of the wavelet �lter is perhaps more
obvious here. Although qualitative evaluation is highly subjective, it appears that the wavelet-based �lter provides
a better image resolution conservation.



Figure 9: Noisy, Frost, Kuan, Oddy, Gamma and Wavelet enhancement for a real SAR image

4. CONCLUSIONS

We have presented a comparative study between a complex Wavelet Coe�cient Shrinkage (WCS) �lter and several
standard speckle �lters that are widely used in the radar imaging community (Lee, Kuan, Frost, Geometric, Kalman,
Gamma, etc.). The WCS �lter is based on the use of Symmetric Daubechies (SD) wavelets. There are two advantages
in using SD wavelets: (1) symmetric extension prevents discontinuities introduced by a periodic wrapping of the data
and (2) identical vanishing of the second centered moment of the real part of the scaling function provides better
approximation at sampling points.

Our comparative tests with 8 standard speckle �lters have shown that our WCS wavelet-based �lter is among
the best speckle �lters. This �lter quantitatively performs equally well for low-level noise (L > 10) and slightly
outperforms standard ones (Lee, Kuan, Frost, Gamma, etc.) for higher speckle noise level (L < 10). Up to 10%
improvement has been measured on a low spectral content image. The current drawback is that computational load
might necessitate specialized hardware for real-time applications; processing of a 512x512 images takes about 3 min.
on a Pentium 90 (the size of strip-map mode SAR images can easily exceed 4000x4000 pixels). Also, in practice, the
theoretical threshold for wavelet coe�cient shrinkage does not necessarily lead to the optimal signal-to-noise ratio
for the enhanced image. A robust threshold estimator is still needed in order to automate the �ltering process.
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